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LETTER TO THE EDITOR 

Logarithmic corrections to finite-size scaling in strips 

John L Cardy 
Department of Physics, University of California, Santa Barbara, CA 93106, USA 

Received 23 June 1986 

Abstract. The corrections to the finite-size scaling behaviour of the eigenvalues of the 
transfer matrix of a critical theory defined on an infinitely long strip of finite width, which 
occur when the Hamiltonian contains a marginal operator, are computed using conformal 
invariance. They show a calculable universal logarthmic character. For the four-state Potts 
model they agree with numerical data. 

One of the most immediate applications of conformal invariance in two-dimensional 
critical behaviour results from the observation (Cardy 1984) that, if we denote :he 
transfer matrix of a strip of wjdth L, with periodic boundary conditions, by exp( - H), 
then the eigenvalues E,, of H are related to the scaling dimensions x,, of the scaling 
operators of the theory by 

(1) E,  - Eo- ~ T X , /  L 

in the limit L-, CO. In addition (Blote er a1 1986, Affleck 1986), the ground state energy 
Eo,  which is the free energy per unit length, is related to the conformal anomaly 
number c, which plays an important role in the formal classification scheme (Friedan 
e l  a1 1984), by 

Eo= AL - i ~ / 6 L +  O( L-') (2) 

where A is the bulk free energy per unit area, a non-universal constant. 
By now these relations have been verified for a large number of models and they 

form a powerful means of investigating new ones. The corrections to (1) due to the 
presence of irrelevant operators have already been considered (Cardy 1986a, b). As 
expected, they are of order L-'-Iy', where y is the renormalisation group eigenvalue 
of the irrelevant operator. Similar corrections are to be expected in (2). However, in 
the presence of a marginally irrelevant operator, one typically expects logarithmic 
terms. In this letter, we calculate the leading logarithmic corrections to the results in  
(1) and (2) and show that they have a universal form. Our main results are contained 
in (11) and (22). 

To be specific, let us consider the effect of adding a term ( -g)  X, 4 ( r )  to the 
fixed-point Hamiltonian. The non-linear scaling field g is supposed to have scaling 
dimension x = 2 - y ,  where y is its renormalisation group eigenvalue. Under a change 
of length scale it satisfies the renormalisation group equation 

dg/dl  =(2-x)g-dg2+O(g3)  (3) 
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where x = 2 and b > 0 if g is marginally irrelevant. In this case the solution for large 
1 is 

In addition, the other scaling variables U ,  are supposed to satisfy the renormalisation 
group equations 

d ~ , / d l = ( 2 - ~ , ) ~ ,  - ~ T & , ~ u , + O ( ~ ~ U , ) .  ( 5 )  

The numbers b and b, are universal if 4 is normalised so that its two-point function 
is l r l -2x .  In fact, they are related to operator product expansion coefficients or, 
equivalently, they give the normalisation of the three-point functions 

( 4 ( ~ 1 ) 4 ( ~ 2 ) 4 ( r 3 ) ) = - b / l r 1 2 I ~ I 1 2 3 1 ~  Ir31 1" (6) 

The easiest way to see this is to perform a Kosterlitz-type renormalisation group 
calculation (Kosterlitz 1974) on the expansion of the free energy in the infinite system. 
An example of such a calculation for the random Potts model is given in Ludwig (1986). 

We discuss the form of the corrections to (1) as predicted by the renormalisation 
group. Since the left-hand side is an inverse correlation length, under a rescaling it 
transforms according to 

Choosing e' = L and using (4), we obtain the scaling prediction 

where @,, is a universal function. In Cardy (1986a, b) we showed that the O(g) 
correction to ( l ) ,  for arbitrary x, is given by 

(10) 
Comparing (9) and (lo),  we see that, in the limit L+m, the corrections to ( 1 )  are 
independent of the value of g and are of the universal form 

(11) 
where d,  = 2b,/b. It should be stressed that this behaviour will set in for strip widths 
L >> exp (l/bg), which may be very large if g is small. An interesting special case is 
when 4, = 4, corresponding to an energy gap scaling asymptotically like 47r/ L. In 
that case the logarithmic correction is as in (11) with x, = d, = 2. 

Next we discuss the corrections to Eo. It is convenient to consider the free energy 
per unit area f = Eo/ L. The change Sf in this quantity may be calculated in an expansion 
in g involving the correlation functions of 4 evaluated at the fixed point: 

E, - Eo - ~ T X , /  L + g b , L ( 2 ~ /  L)" + O( g2). 

E ,  - Eo - (2  T /  L ) ( x ,  + d,/ln L )  + O( L-'( In L ) - 2 )  

(12) Sf = - g ( ~ ) - ~ c { 4 ( r ) 4 ( 0 ) ) ~ - ~  g2 8' c ( 4 ( r 1 ) 4 ( r 2 ) 4 ( 0 ) ) c + .  . . . 
r r t . r 2  

In general, operators may be subtracted so that ( 4 )  = 0 in the bulk, and conformal 
invariance then implies that the first term vanishes in the strip also. However, operators 
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in the conformal block of the unit operator transform anomalously (Belavin et a1 1984) 
and will have a non-zero expectation value in the strip. The most important is the 
irrelevant operator L-2L-21, which has x = 4. This will give O( L-4) corrections to f 
which may be expected to have a large amplitude, since they occur in first order. 
Indeed, such corrections are observed to be important in numerical calculations (Blote 
and Nightingale 1982). They may mask the more interesting corrections we are studying 
here. In the higher-order terms, the sums over r may be replaced by integrals, and 
the correlation functions by their continuum limits, if we impose a short distance cutoff 
r >  1, etc. (Here, as throughout this letter, we take the lattice spacing to give the unit 
of length.) The correlation functions are to be calculated in the strip geometry and 
are determined in terms of the infinite plane correlation functions by using the conformal 
mapping (Cardy 1984) w = ( L / ~ T )  In z. However it is simpler to transform the integrals 
back to the z plane. We first examine the O(g2) term. This is, for general x, 

Sfi = -;g2(2.rr/L)2"-212(x, 27rlL) (13) 
where 

I ~ ( x ,  E )  = d2z(  z " - ~ ~ z  - 1 (-"e(( Z- 11 - &). J 
For O<x < 1, 12(x, 0) converges and is equal to (Hentschke er a1 1986) 

d - ( ~ / 2 ) ~ r (  1 - X) 
r(i - ~ / 2 ) ~ r ( x )  * 

The leading E + 0 behaviour of Z2(x, E )  is easily extracted. We then find that 
7rE2-2X 

Z2(X, E) = ZZ(X, 0) -- + O( E - " ) .  
I - x  

Note that this is valid up to the next pole of Z2(x, 0), which occurs at x = 3. The second 
term in (16) gives a contribution to the bulk free energy. It is non-universal because 
it depends on the details of the cutoff procedure. The first term contributes to the 
universal L-' term. If g is irrelevant ( x  > 2), we see that the leading correction to the 
free energy has the form 

IT 
f = A( g) - - ( c  + Bg2L4-2" + O( L 6 - 3 x ) )  

6 L2 
where B is a constant which is positive for 2 < x < 3. The expression in parentheses 
defines an effective c (L) ,  which approaches its asymptotic value from above. 

However, from (15) we see that this correction actually vanishes at x=2.  We 
therefore must consider the next term. This is 

Sf3 = : b g 3 (  2 .. / L) 3" -4 z 3  (x ,  2 ../ L) (18) 
where 

I ~ ( x ,  0) = I z ~  I x - 2 1 ~ Z I x - 2 1 ~ 1  - 1 I z ~  - 1 I-" I z ~  - ~2(-" d2z1 d2z2. (19) I 
This converges for 0 < x < $. The pole at x = $ corresponds, by the same argument as 
above, to a contribution to the bulk energy. The term we want is given by the analytic 
continuation of Z 3 ( x ,  0) to x = 2. An integration by parts shows that 

Z 3 ( X ,  0 )  = - 2 - x  I F(zl, z2)(  IzI - 1 12+lz, 1'- l ) l z l  I-' d2zl dZz2 
4-3x 



L1096 Letter to the Editor 

where F is the same integrand as in (19). The integral now converges for 0 < x < 2 
and it is relatively straightforward to determine the residue of the pole at x = 2. The 
final result is 13(2, 0) = -r2, so that 

Sf= -2r4bg3/3 L'+ 0(g4).  (21) 

The renormalisation group (Blote and Nightingale 1982) now implies that g in the 
above expression should be replaced by g(ln L )  - l / v b  In L. This, of course, means 
that we should pick up logarithmic dependences on E at higher orders in g. Although 
conformal invariance does not in general completely predict the four- and higher-point 
functions, one can see, by using the operator product expansion, from where these 
factors must arise. Note that no such factors arise which would correspond to replacing 
g by g(ln L )  in the non-universal bulk term, in agreement with Blote and Nightingale 
(1982). The final result for the free energy is 

L)-4) 

Note that the effective c( L )  defined by (22) approaches its asymptotic value from above. 
For the case of the four-state Potts model, we have obtained the operator product 

expansion coefficients - b and - b,, where E is the energy density, by taking the limit 
q + 4 of the results of Dotsenko and Fateev (1985). We find b = 4 /d3  and b, = d3/2 .  
The ratio of these, as they appear in the renormalisation group equations (3) and (9, 
agrees with the ratio of coefficients found by Cardy et a1 (1980) (who used a different 
normalisation of the marginal scaling field g )  by comparison with exact results. This 
result forms a non-trivial check of the work of Dotsenko and Fateev. We thus see that 
d, =a.  In a similar way, we find that d,  =A, where (+ is the leading magnetisation 
operator. 

Blote and Nightingale (1982) and Nightingale and Blote (1983) have calculated 
numerically the free energy per siteJ; and the gaps E,  -Eo and E, - Eo,  corresponding 
to the leading energy and magnetisation operators, repectively, for the nearest-neigh- 
bour isotropic q = 4 Potts model for strips up to width L,,,S 1 1 .  As discussed in 
Nightingale and Blote (1983) and Blote et al (1986), the extrapolated values of x,, xu 
and c agree fairly well with their expected exact values of i, and 1,  respectively, 
although the agreement is not so good as for other values of q, where no logarithmic 
corrections are present. We now show that if these exact values are taken for granted, 
then the finite-size deviations found by Blote and Nightingale are accounted for by 
logarithmic corrections of the type discussed above. In calculating these it is not 
appropriate to use the asymptotic forms in (11) and (22), but rather to replace g in 
(10) and (21) by g(ln L ) .  We used the free energy data to calculate g(ln L )  and then 
used this value to predict the deviations in the other eigenvalues. Although the 
correction S f  is typically down by a factor of on the leading behaviour, the results 
of Blote and Nightingale are sufficiently precise to allow us to extract these values 
easily. Our results for the deviations in the gaps are shown in table 1 and compared 
with the same quantities derived from the data displayed in Nightingale and Blote 
(1983). The agreement is rather good, despite the fact that that we have ignored 
corrections of higher order in g(ln L ) .  Consideration of these terms shows that the 
effective expansion parameter is rg(1n L )  a O . 1 ,  so that the discrepancies are of the 
expected order of magnitude. A plot of g(ln L)-' against In L shows some curvature, 
indicating that the asymptotic form of (4)  has not yet been reached. The observed 
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Table 1. Corrections to the free energy per site and the lowest gaps of the four-state Potts 
model, for strips of width L. Second column shows Sf=f(L)-f(co)+a/6L2, with f ( L )  
taken from Blote and Nightingale (1982) and f (m)  from Baxter (1973). The last four 
columns show predicted corrections to the gaps: An = (E,(L) - E0(L))L-27rx, ,  and their 
exact values, derived from data which is displayed in figures 2(a)  and ( b )  of Nightingale 
and Blote (1983). 

L sf x io5 g(ln L) As Exact A m  Exact 

6 42.17 0.0466 1.59 1.67 0.132 0.114 
7 23.65 0.0426 1.46 1.60 0.121 0.105 
8 14.53 0.0396 1.35 1.54 0.112 0.100 
9 9.55 0.0372 1.27 1.49 0.106 - 

10 6.60 0.0353 1.21 1.45 0.101 - 

departures may be accounted for by adding a term O ( g 3 ) ,  with an appropriate cofficient, 
to the right-hand side of (3). 

We conclude that the major corrections to finite-size scaling for this model are 
logarithmic and that their amplitudes show quantitative agreement with the predictions 
of conformal invariance. 

More recently Alcaraz and Barber (1987) have considered the quantum Hamiltonian 
four-state Potts model and another Ising model which is expected to be in the same 
universality class. For the latter model, they find effective values of c less than unity, 
which would appear to contradict our result, or to imply that it is in a different 
universality class. However, the situation in this case is complicated by the anisotropy, 
which is affected in a non-trivial way by corrections to scaling. In the estimates of the 
ratios c/x,, where the anisotropy should cancel, for both models the sign of the 
deviations from the exact Potts values found by Alcaraz and Barber agrees with our 
results, although the L dependence does not. It is possible that the asymptotic region 
begins at larger values of L for these quantum models. Similar poor convergence for 
the q = 4  quantum chain was found by von Gehlen et a1 (1986). 

I thank M P Nightingale for providing the numerical data on which figures 2 ( a )  and 
( b )  of Nightingale and Blote (1983) were based, J Shapiro for assistance in evaluating 
the integral in (19) and A Ludwig for useful conversations. F C Alcaraz and M N 
Barber kindly sent me a copy of their work before publication. This work was supported 
by NSF Grant No PHY83-13324. 
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